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ABSTRACT 

In this paper, we study the Bohr compactificatiort of an arbitrary topological 
group T with regard to obtaining relations between relatively dense (or dis- 
cretely syndetic) subsets of T, and neighborhoods of the identity in the Bohr 
cornpactification. The methods utilized are those algebraic techniques which 
have been recently applied to topological dynamics (see [2]). For an 
abelian group, we show that cls (A -1 AAa-1), for A relatively dense and a 
E A, is usually a neighborhood of the identity, thus generalizing a result of 
Folner [4]. Moreover, an analogous result is proved in the non-abelian case 
under additional assumptions. Finally, we utilize these results to obtain a 
generalization of a result of Cotlar-Ricabarra [ll concerning maximal almost 
periodicity in abelian topological groups. 

1. Introduction 

The major goal of  this paper  is to make a systematic and unified study of the 

Bohr compactification of an arbitrary topological group T. The methods to be 

used are the algebraic techniques developed by Ellis in the study of topological 

dynamics (see [2] for a general account); in particular, the techniques used in [3] 

to study equicontinuity will be utilized extensively. The impetus for this study 

came from an at tempt to recover and generalize Folner 's  topological assertions 

in [4] concerning relatively dense (or discretely syndetic) subsets of  the topo- 

logical group and neighborhoods of the identity in the Bohr compactification. 

The methods involved in Folner ' s  paper are basically analytic, involving sub- 

stantial use of  Banach means on the original group and Fourier analysis. In this 

paper, we avoid the use of  Fourier analysis by looking at an algebraic represen- 
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tation of the Bohr compactification which is particularly amenable to analysis 

via finite-dimensional representations. The thrust of this study is to provide 

generalizations in two directions. First, we obtain some more precise results in 

the abelian ease. Second, we do obtain a non-abelian theory which is based on 

the asumption that the Bohr compactification does assume the desired form (this 

is always obtained in the abelian case). We will comment further on this assumption. 

To be more precise, the following result is obtained in [4]. 

THEOREM. Let T be an abelian topological group, A a discretely syndetic 

subset of T, and Va neighborhood of the identity e. Then there exist characters 

Z1,'",Zn such that if t~ T and Rez,(t) __> 0 (r = l , . . . ,n) ,  then t~AA-1AA- IV .  

The proof involves analyzing, via the translation invariant mean dominated 

by the Banach upper mean, the characteristic function of a uniform open swelling 

AVo of A, and obtaining a positive definite function. The main result invoked 

is Godement's decomposition, on locally compact groups, of such a function 

into an almost periodic function and a function h with ] h j2 having 0 mean value. 

The proof proceeds by estimating the Fourier coefficients of the almost periodic 

function. In our paper, we obtain the following generalization: If  A is a discretely 

syndetic subset of an abelian topological group T, then there exist continuous 

characters X~,"',Zn and e > 0  such that t e T w i t h  I z r ( t ) - I  < e  (1<_ r <_ n) 

implies t e cls(A- IAAa- 1) for "most" a e A. In addition to reducing the num- 

ber of times A is used from 4 to 3, it indicates that the characters can be picked 

independent of neighborhoods of e. 

The methods employed also give results for non-abelian T, viz: I f  A is dis- 

cretely syndetic in a topological group T, then there exists continuous finite- 

dimensional unitary representations XI,"',Z,, and e> 0 such that t e T  with 

II ;(r(t)- I 1l < e. (l <_ r <_ m) implies tEA-1AAVA -1 for every neighborhood V 

of e. However, in this case the basic assumption of our approach (H(G,.~)~ E; 

see below) is not automatically true as it is for abelian groups T. Indeed it is not 

an easy assumption to verify in general, and in particular we do not know whether 

it is true for amenable groups, T. Thus the Fourier analysis techniques give results 

for amenable non-abelian groups which we are unable to obtain. The non-abelian 

theory is not devoid of interest, however, tbr the following reason. Let (X, T) 

be a compact minimal transformation group, (Y,T) its maximal equicon- 

tinuous factor, and ~:(X,T)  -~ (Y, T) the canonical map. L e t x o ~ X  and 

Yo -- ~b(xo). Then the maps t ~ Xot: T - ~ X  and t ~ y0t: T ~  Y induce 
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topologies 57- and Se respectively on T. The various results about the Bohr com- 

pactification of T discussed here may be viewed as results concerning the rela- 

tionship between ~7- and ~ (When X is taken to be the universal minimal set 

for T, then Y is just the Bohr compactification). Now the methods used in this 

paper may be applied to the above more general situation to give similar results. 

Here simply verifiable conditions (e.g., point distal) may be imposed on (X, T) 

to guarantee that the requisite assumptions be satisfied. 

Finally we consider the Cotlar-Ricabarra [1] result for maximal almost perio- 

dicity, which states that in an abelian topological group T, if s e T with s ~ e, 

then there exists a continuous character % with %(s) ~ 1 iff s ~ U 6 for some dis- 

crete syndetic symmetric open neighborhood U of e. We obtain U 4 easily, 

and, in fact, cls(U 3 x). We believe that the methods of this paper can be 

pushed to yield U 3 , the best obtainable result. 

We shall assume the notation of I2] in general. However, for the sake of 

completeness, we include the following brief summary of the relevant facts. Thus 

( T , ~  will denote an arbitrary Hausdorff topological group, and fiT the Beta- 

compactification of the discrete underlying group T. Also, r162 will denote the 

continuous functions on fiT. T is, of course, canonically isomorphic to the 

bounded functions on T. Recall that there is a correspondence between pointed 

transformation groups (i.e., having a distinguished point with dense orbit) and 

T-subalgebras d c c~, i.e., d is a uniformly closed subalgebra of ~ such that 

f e d  implies t f  e d (t e T) ,  where ( t  f ,  s)  = ( f ,  s t ) .  If (X, Xo, T) is pointed and 

d is an algebra corresponding to it (in general, there are many such algebras), 

then d is isomorphic to cg(X). There are many universal minimal sets for T 

discrete in fiT; we shall distinguish one and denote it by M. These minimal sets 

correspond to minimal right ideals of the semigroup fliT. From the general theory 

of these semigroups, it follows that there exist idempotents in M,  and we again 

distinguish one and denote it by u. We then have that G = Mu is a group. We 

let J denote the set of idempotents in M. 

It turns out that an algebra corresponding to M is 9j(u) = { f ] f e  cr = f } ,  

and that all minimal sets of T have representative algebras contained in 9~(u). 

Thus, we let ~' be the unique representative algebra for the universal equicon- 

tinuous minimal set (there is only one in this case). 6" is the algebra of almost 

periodic functions 1'2, Proposition 15.7]. 

In general, the way that one brings the topology 3" on T into the algebraic 
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picture is to consider the T-subalgebra ~ of bounded right uniformly continuous 

functions on (T, 9-) [2; 2, 3 of Notes of  Chapter 9]. It  turns out that the minimal 

version of ~ ,  namely ~ ,  = ~ n 9~(u), is sufficient for our purposes. 

With every T-subalgebra d of 9~(u), we associate a group 9 ( d ) =  A 

= {~E G If~ = f ( f e d ) } .  Thus, we will consider the groups E = g(r and 

R = g ( ~ u ) .  

If  ~r is a T-subalgebra of 9~(u), then d induces a topology z ( d )  on G as 

follows: if K c G, then a e cls ,~)K iff f f  < f ru  ( f e  d R ,  the real-valued func- 

tions in d ) .  We have that (G, z (d) )  is always compact but, in general, satisfies 

none of the separation axioms. We will consider z(~) and z(~,) in this paper. 

Finally, we shall frequently use the notations of [3]. 

2. Bohr Compactifications 

NOTATION (2.1). We will denote by B(T, 3-) the transformation group I ~ ~ ~ I. 

Note that ~ N ~  = d o c3~u, since d ~ = d ~ c3 9~(u) [2, Prop. 15.7], and thus is 

a minimal subalgebra. 

RE~aARK (2.2). B(T, J )  is a compact topological group for which (B(T, o~), (T,~-)) 
is a jointly continuous transformation group with the action induced by a ho- 

morphism (not necessarily injective) with dense image. Moreover, if G is a com- 

pact topological group on which (T, ~ acts in a jointly continuous fashion via a 

homomorphism with dense image, then there exists a transformation group 

homomorphism q~: (B(T, ~--), (T, 3-)) ~ (G, T) (thus q~ is a group homomorphism). 

Thus, B(T,J-) is the Bohr compactification. 

DEFImTION (2.3). Let )~ be a bounded continuous finite-dimensional repre- 

sentation of (T, J ' ) .  I f  G x = cls0~(T)), then G z is a compact topological group 

satisfying the condition of Remark (2.2) Let ~r ~ 9.I(u) be an algebra such 

that (Iscxl, (T,~V)) _ (Gz,(T, gr)). Then s~' z is called a representative algebra 
for )~. 

To see that Gz is a compact topological group, it is sufficient to show that G~ 

is closed in the appropriate version of C "2, as llx<t)ll -<- M for some fixed M. 

Now it is clear that det(z(t)) is also uniformly bounded (in some polynomial 

of M).  If  ]det(z(t)l # 1, then either [det(x(t)) I or [det0((t-1))[ > 1, say the 

former. Then I det(x(t"))] ~ oo, a contradiction. Hence, ]det0~(t))} = 1, and 

x(T) c SL(n, C), which is closed in C "~. This means that Gx = cls)~(T) is also 

closed in C "*. 
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All representations considered will be bounded. 

Recall that if (~,) is a family of T-subalgebras of c~, then V M, is the least 

T-subalgebra containing all the aJ,'s. 

LEMMA (2.4). o ~ n ~  = V{e~'x[% a continuous finite dimensional repre- 

sentation of (T,~)}.  

PROOF. First notice that ~ p  c ~' (p �9 fiT) and the fact that e is regular [2, 

Definition 11.19.1] implies o ~ h A  is regular. It then follows that for every Z, 

d x c ~ a n d t h u s  V d ~ c e n ~ .  

Next consider the topology Y l  induced on T by considering the orbit of the 

identity e �9 [ e n ~l .  Since the canonical map zt: (T, 3 )  ~ I e n is continuous, 

we have that 3" ~ 3-1 . Moreover, since (n(T), (3-'1)) is a dense subgroup of the 

compact group I g n ~ l ,  it follows that the continuous finite-dimensional repre- 

sentations of (re(T), (3--i)) separate points of [ 4 n ~ [ .  It then follows that the 

continuous finite-dimensional representations of (T,3-1) separate points of 

[e  C~R I and, since Y = Y l ,  the continuous finite-dimensional representations 

of (T, f )  separate points. Again by the regularity of 8 n ~,  V~'x ~ e n ~ ,  and 

thus V~Cz = e n ~ .  

LEMMA (2.5). z(~) = Z(~,). 

PROOF. We first show that ~u  = ~ n 9/(u). Clearly ~ n 9.I(u) c ~ u ,  and 

since ~u  ~ ~ ,  then ~'u c ~ n 9/(u). 

Finally, z(~) = z(~u) = z(~r n 9.I(u)) = z(~,) by [2, 4 of (11.11)]. 

The next result provides the first identification of ] e c~ ~] .  This holds inde- 

pendent of any commutativity assumptions on T 

LEMMA (2.6). l e  n ~ l  ~ (G/ER,z(o~)). 

PROOF. Consider the canonical map [e I le n m.I  Now l el  -- 
by [2, (15.8)]. This induces a homomorphism q~:(G/E,z(~))~ ] e  n ~ , l  given 

by q~(Epu) = P l e n ~ , .  
Suppose q~(Epu) = ul  r  Then p i e  ~ , = u l r  c ~ , ,  and 

pu~fl(o~n~,,) = ER [2, (14.16)]. Next, let ysE ,  6 s R .  Then 4~ (Er~u) 
=rtSl o ~ n ~ , = u  I e AM,. It follows from these remarks that l e I 
(ER/E), z(oO) = (G/ER, z(~)), as desired. 

Since the results of [2, (15.6) to (15.8)] also show that l el -- (G/E,z(~)), 
it also follows that l e n .l -- (G/ER,z(~)). 
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The major problem with the above characterization is that the role of 3- via 

the algebra ~ is obscured. The next result settles this problem. 

LEMMA (2.7). 

1. The canonical map n:(G,z(~ ~ ) ) ~  (G/ER,z(g)) is continuous. 

2. t ~ n ~ l  ~- (G/ER, z(@ n ~)) ... (G/ER, z(~)). 

PROOF. 1. It is equivalent by (2.6) to show that gl : (G, z(d ~ t~ ~)) ~ ] o ~ n ~ i, 

~ 7t ~ n ~ ,  is continuous. Since c~(l o ~ n ~ 1) = • n ~ ,  it is sufficient to show 

that f ~ r  O R  implies fro1 is continuous on (G,z(,~ n ~ ) ) .  But by [2, Lemma 

14.12] with o~" = C c d e n ~  c 8 = ~ g ,  it is immediate that fn~ is continuous 

on (G, z(r n R)) .  The result follows. 

2. Since (G, z(~ ~ n ~))  is compact and (G/ER, z(g)) is compact Hausdorff, it 

follows by 1, that (G/ER, z(r nR))-~ (G/ER, z(~)). Moreover, since (G/ER, z(&)) 

is compact and z(g n ~ ) c  z(~) on G/ER, we also have that (G/ER, z ( ~ ) )  
" (G/ER, z(~t)) 

Note that if T is discrete, N = W and we have that the Bohr compactification 

is (G/E, ~), in agreement with [2, Prop. 15.8]. Also the canonical homomorphism 

from r i n t o  (G/ER, x(~)) is t ~ ER(utu). 

The next result is the desired identification of B(T, Y )  when T is abelian. The 

idea is to characterize ER in a form in which the role of ~ is transparent and 

which will enable us to do further analysis. 

Recall that H ( G , N ) =  (3 {cls~(s)V I V a z(~)-neighborhood of u}, [2, Re- 

mark 14.10]. Note  that, of  course, ~ r 9.I(u), but all the comments are still 

applicable, since z(~) = z(N,). 

THEOREM (2.8). I f  r is abelian, then B(T, SZ-) ~_ (G/H(G,~), z(~)).  

PROOF. By 2.7, it suffices to show that H(G,~) = ER. Since z(N) c z, it 

follows by [2, 15.11] that H(G,~) = n {cls~W I Wa z-neighborhood of u} = E 

(the latter equality is known at this point only for T abelian). Moreover, clearly 

H(G,N) ~ R. Finally, since Nc~ c ~(c~ e G), then H(G,N) is a subgroup of G 

and thus H(G,~) ~ ER. 

Next, consider the canonical map rr:(G,z(~))--,  (G/ER, z(~)). Let U be a 

closed neighborhood of r~(u). Then r~(W) ~ U for some z(N)-neighborhood W of 

u,  and rc(cls,(mW ) ~ cls~(mrc(W ) c cls~(~)U = U. Thus, 7r(H) ~ ~(c l~)W)  c U, 

whence zffH) c n { U I U a z(~)-neighborhood of  re(u)} = rr(u), since (G/ER, z(~) 

is Hausdorff. This means that H(G,~) ~ ER. 
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With regard to the assumption H(G, ~ ) =  ER, we have already noted 

that the assumption H(G,z) (= r3 {cls~W] Waz-neighborhood] of u}) = E is 

sufficient. This latter assumption is false in general. The group T = SL(2, ~), 

provides a counter-example. This is partially due to the facts that there 

exist non-trivial proximal flows for SL (2, R). i.e., minimal flows for 

which every pair of points get arbitrarily close under the group action, 

and that there are no almost periodic functions on SL(2, R). It is conjectured 

that if the group T does not admit any non-trivial minimal proximal flows, then 

H(G,z) = E. (N.B. This conjecture has recently been verified. Since it is known 

that all nilpotent groups satisfy the hypothesis, the following theory holds in this 

case). Of course it is possible that H(G,z) ~ E but H(G,~) = ER. However, no 

conditions are presently known which enable one to directly compute H(G,~)  

without computing H(G,z). 

3. General izat ions o f  Folner's  results 

In this section, we will develop a unified approach to Folner's results. The 

standing assumption on (T, 9-) (~-- will always stand for a Hausdorff topological 

group topology for T) is that B(T,J-) ~- (G/H(G,~),z(~)). We also let~f'~ )(J') 

denote a neighborhood system. Also recall that ifA c T, we define h(A) = {p [ p ~ fiT 

and Aep} .  Thus h(A) c~G= {~]~eG and A ~ } ,  which will be denoted 

ha(A). 

LEMMA (3.1). Consider (T,3-) and let A ~ T, U ~JV'e(~'), where e is the 

identity of T. Then there exists f : T ~  [0,1] uniformly continuous such that 

f J A - O , f [ T - A U -  1. 

PROOF. It is well-known that we can find g: T ~  [0,1] uniformly continuous 

such that g(e) = 1, g] T -  U - 0. Now define h(x) = supy~ag(xy-X). It is 

direct to verify that h I A =- l, h I T -  AU =- 0 and h is uniformly continuous. 

Finally, let f = 1 -  h. 

Suppose that we have a continuous finite-dimensional representation Z of 

(T, ~-). Then as a map on T with its discrete topology, Z has a continuous ex- 

tension ~ to fiT. 

LEMlV[A (3.2). ~ iS a homomorphism o]" fiT. 

PROOF. Let pe t iT ,  (t,) a net in T with t~ - ,  p. If t ~ T ,  then 

~ ( p t )  = ~.(l imtfl)  = l im~(t~t)  = l im (~(t~)~(t))  = [ l im~( t~ ) ]~ ( t )  = ~(p)~(t) .  
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Now if q, r �9 fiT and (tv) a net in Twith t~ -~ r ,  ~(lim qtv) = lim~(qtv) = lim ;~(q) ;~(tv) 

= ~ ( q ) ~ ( r ) .  

For the next lemma, recall that if (o ~ K c fiT and f � 9  c~n, then f/~ �9 ~ is de- 

fined by ( f r ,  t) = sup ( f k ,  t ) .  
. k E K  

LEMMA (3.3). Let C c T ~ fiT and f�9 the real-valued functions. Then 
fhotC) < faCc2= fC if hG(C ) ~ ~ .  

PROOF. Since ho(C) c h(C), the first inequality follows by [2,11.8]. Now let 

p �9 h(C0 and t �9 T. Since h(C) is a fiT-open neighborhood of p, there exists a 

net (s~)�9 (equivalently, h(s~)�9 such that s~ ~ p. Then s~ t~  pt and 

( fp ,  t) = ( f ,  pQ = l im(f ,s~t)  = l im(fs~,t)  <= supc(fs,  t) = ( f c  O. Con- 

sequently (fh(c), t) = SUph(c) ( fq ,  t) < ( f  c, t ) ,  and so f  h(c) < f c .  Since C c_ h(C). 

we have fh(C) = f c .  

The following result is crucial to our analysis. 

LEMMA (3.4). Let B c T, C � 9  Then cls,(~)ho(B) c ho(BCV ) for every 

ve..G(9-). 

PROOF. Let V�9 If  BCV = T, the result is obvious. So assume 

B C V #  T. By (3.1), there exists f : (T,3-)-~[O,  1] uniformly continuous 

such that f I B C -  O, f I T - B C V -  1. 

Now let a�9 ). By the definition of the z(~)-topology fa  =<}hG(~)U. 

Then by (3.3), f a < = f ' u ,  and ( f , a )  = ( f a ,  e} _-< ( f ' u , e )  = ( fB ,u} .  If  

s e B, r �9 C, then ( fs ,  r)  = ( f ,  sr) = 0, since sr �9 BC. Now C �9 u implies that 

there exists a net (t~) �9 C such that t~ - ,  u in the ordinary topology of fiT. It 

follows that ( f ' , t ~ )  ~ (fB, u) .  Since ( f ' ,  t~) = sup~(f t ,  t~) = 0, then 

( f ,  u)  = 0 and ( f ,  a)  = 0. We will complete the proof by showing that ~, �9 G 

with ( f ,~)  = 0 implies ~�9 i.e., BCV�9 Otherwise T - B C V � 9  and 

�9 h ( T - B C V ) .  If  (s,) is a net in T - B C V  such that s~-~ ~ in fiT, then 

( f ,  s,) ~ ( f ,  7).  But ( f ,  s~) = 1 for all v implies ( f ,  ~) = 1, a contradiction. 

This completes the proof. 

The next set of comments requires some distinction between the abelian and 

non-abelian cases. First consider the left transformation group (G, M) with com- 

position as the action. I f  T is abelian, (G, M) is minimal. For if rn e M,  and 

t e T ,  then ut = u t u � 9  and mt = umt = utm. Since { m t l t s T }  is dense in 

M,  this shows our assertion. When T is non-abelian, the situation is somewhat 
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different. In this case, we know from the general theory that there exists a G-almost 

periodic point p ~ M.  Moreover, since (G,M, T) is a bi-transformation group, 

then (ptlt e T} is a dense set of G-almost periodic points in M,  and thus the 

G-almost periodic points A(G, M) satisfy cls(A(G, M)) = M.  Finally, there are 

G-almost periodic idempotents. For if pv = p and qp = v, then (qu)p = qp = v 

and qu ~ G, whence v is G-almost periodic. It is an interesting open question 

whether u is also G-almost periodic. To take into account the fact that, in general, 

we can no longer fix the idempotent to be u, we need the following observations 

about the groups Gv(v ~ J ,  the idempotents of M). Recall that in the general 

algebraic theory, the idempotent was arbitrarily chosen. Since we could carry 

out the general theory for Gv, where v ~ J ,  it makes sense to speak of the 

r(~) (=  z ( ~ v ) =  ~(~v)) topology on Gv. 

LEMMA (3.5). Let w, v ~ J .  Then r (Gw, z(~)) ~ (Gv, z(~)), o~w ~ c~v, is an 
isomorphism. 

PROOF. Clearly r is bijective. Thus, we need only show that r is continuous. 

Let ~ w ~ c l s ~ ) ( K w ) .  Then f~w <= ( f I ~ ) w ( f ~  R = ~ t~og).  Pick g e a  R and 

p ~ fiT. Then ((gcz)v, p) = (g~zwv, p} = (go;w, vp) <= ((grW)w, up} = ((g~:V')w,vp) 

<= ((gXV)w2,vp} [2, 4 of  11.7] = ((g~:")w, vp} = ((gK")wv, p> = ((g~:V)v,p}. 

Thus, gc~v <= (gKV)v, from which it follows that ~v = r = 
= cls~(a)(r 

The content of (3.5) is that analysis is identical on each group Gv(v ~ J).  In 

passing, one should note that the ~v-topology on M[3, Def. (2.2)] coincides 

with the ~ - t o p o l o g y  on M (v, w ~ J).  

LEMMA (3.6). Let p ~ A ( G , M )  and v ~ J  with pv = p. Let B ~ p .  Then 

(int~(~)cls~mh~o(B)) (3 ha~(B ) ~ j~,  where hGo(B ) = h(B) c3 Gv. 

PROOF. Since B ~ p = pv, then p ~ h(B) n My = h(B) c3 Gv. Thus Gv~clsM(Gp) 

and h(B) an ordinary neighborhood of p implies that F" h (B)~  Gv for 

some finite subset F of G. Then F" (h(B) C3Gv) = F .  hao(B) ~ Gv, from 

which it follows that int,ta)cls~t~)hGo(B ) ~ Zi. This of course implies that 

(int~(a)cls~(~)ha~(B)) n hao(B ) ~ ~ .  

In preparation for the key lemma to obtain our results, we need the following 

observations. We have noted that the canonical homomorphism from T into 

B(T,~Y-) ~_ (G/H(G,O~),r(~))is t ~ H ( G , ~ ) ( u t u ) .  This leads to the natural 

extension r  ~ B(T,~-),r = H(G,~)(upu) .  Now let Z be a finite-dimen- 

sional continuous representation of (T,~--). Then of course, Z has an extension 
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to B ( T , J )  satisfying the equations ~(qS( t ) ) - -~(H(G,~)u tu)=  Z(t)( teT) .  

In addition, we have already defined the extension ~ of Z to fiT (see (3.2)). Since 

~q5 } T = Z = ~] T, we have by continuity that )~b = ~, i.e., ~(~b(p)) = 2(P) (petiT). 

LEMMA (3.7). Suppose that ueA(G,M) .  Let B c T ,  and assume that 

h~(B) ~ ~ .  Then there exist continuous finite-dimensional unitary represen- 

tations Z1, '" ,Z, of (T,~) ,  e>u ,  and ctehG(B ) such that if [Iz,(t)-l[! <8 

(1 <_ i <_ n), then BCVe~tu for every neighborhood VeJV'e(3-) and every 

C e u .  

PROOf. Since ho(B)# ~ ,  it follows that there exists aeho(B)such that 

e int~a)cls,~)ho(B). 

Now recall that B(T,.Y-) = (G/H(G, ~),  ~(~)). We claim that if N is a z(~)-open 

neighborhood of y, then there exists continuous finite-dimensional unitary repre- 

sentations Z~, "",Z, of (T,Y-) and e > 0 such that if II 2 , ( ~ ) -  2,(~')I[ < e, then 

nl( f l )e lq(N),  where 2, is as in (3.2) and 7q:(G,x(~))_~ (G/H(G,~),x(~)) is 

the canonical map. First note that ~b I G = lh ,  where ~b is the above mentioned 

map. Now rq(N) = ~b(N) is an open neighborhood of r4? in B(T,~-). Then 

choose finite-dimensional unitary representations Z~,"' ,Z,, and e > 0 such that 

[l~(nxfl)-~i(n~y)l I < e  (i = 1, ..., n) implies n~flen~N. Since 1l~(fl)-2~(Y)[I 

= [12,(rqfl) - 2,(teaT)11, this means that II 2,(fl) - 2,(Y)[I < ~  (i = 1,. . . ,n) implies 

n~fl e n~N, as asserted. 

Next, we apply the above paragraph to L = int~(~)cls,(~)ho(B), to produce 

Zl,'",Z., e > 0 such that I[ ~,(fl) - ~,(~)I[ < ~ implies nt(fl) ~ n~(L). Now let 

t e W with I[ Zi(t) - I II < e (1 -< i < n). Then 11 ~(cttu) - ~(~)II = [I ~i(~) ~i (tu) 

- II II II -  ,(u)II --< [I - Ill II  ,(u)II -- II - z I[ 
(1 < i < n), since Z~ is unitary. Thus, zl(~tu)e 7zt(L), and ~tu ~ H(G,~)cls,(~)L 

= cls,<~)L, by [2, Lemma 14.7]. Now cls:<~)L c cls,~a)h~(B ) c h~(BCV) for 

every V e W e ( f )  and C e u (3.4). Thus, BCV e atu, as desired. 

Note that if v e J,  v e A(G, M) and h~o(B) # ~ , then (3.7) holds with BCVe ~tv 

for every V e We(J-  ) and C e v. 

The next result constitutes the major theorem of this section. We will derive 

several consequences which will require distinguishing between the commutative 

and non-commutative cases, and which in turn will lead to several generalizations 

of [4]. 
DEFINITION (3.8). Let A ~ T. Then A is big if there exists a minimal right ideal 

N of fiT such that h(A) ~ N ~ ~ .  
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One should note that as with the idempotent u, the minimal ideal M was 

chosen arbitrarily. Thus, we could have performed all of our analysis in any 

minimal right ideal. Thus, if A is big, there is no loss of generality in assuming 

h ( A ) n M  ~ ~ .  Since h ( A ) n M  is open in M ,  h ( A ) n A ( G , M ) ~  ~ .  If  

p e A(G,M)  n h(A) and pv = p, then hGo(A ) ~ ~ ,  and v e A(G,M) .  

THEOREM (3.9). Let B c T such that B is big. Then there exist continuous 

finite-dimensional unitary representations Z1, '" ,Z ,  of (T,~--), ~ > O, and v a 

minimal idempotent such that if II Zi( t) - I I1 < (1 _< i _< n), then t e B -1BCV C - l 

for every Ve~e(~ r and C e v .  

PROOF. By the above comment, there exists v 2 = v e A(G, M) with hGv(B) ~ ~ .  

By (3.7), there exists ~ehGv(B) such that BCVecttv for every Ve.Are(J -) and 

C e v. Thus, (BCV) (~t) e '.,. Now it is direct to verify that (BC V) (ca) = t -  1 [(BC V)~] 

Thus t - l[(BCV)o~]ev.  Moreover, if s e (BCV)~,  then ( B C V ) s - l e ~ .  Since 

B e ct, (BCV)s -1 n B ~ J ,  whence s e B-1BCV.  Thus (BCV)~ c B-1BCV.  Now 

C e v  implies t - l [ ( B C V ) c t ] n C  # ~ .  Hence t - I [ B - 1 B C V ] n C  ~ j~,  from 

which it follows that t e B -  1BCVC- 1, as desired. 

The first application of (3.9) is to discretely syndetic sets. 

LFMMA (3.10). Let C be discretely syndetic, and v be a minimal idempotent. 

Then there exists c e C  with Cc -x e v .  

PROOF. We claim that Cv n C ~ ~ .  For if Cv n C = ~ ,  then ~ = (Cv n C)v 

= Cv 2 n Cv = C v n C v =  Cv, which is a contradiction [2, Lemma (8.15)]. 

Thus c e Cv for some e e C. This means that Cc- i e v. 

Note that in general, if p e N ,  a minimal ideal, then C s e p  for some s e T .  

The next result is the non-abelian version of F~lner's result. 

COROLLARY (3.11). Let C be discretely syndetic. Then there exist continuous 

finite-dimensional unitary representations Z~, '" ,X,  of (T,#-) and ~ > 0 such 

that if [[ Z i ( t ) -  I 1] < e (1 <- i < n), then t e C - I C C V C  -1 for every V e.A"e(,~-). 

PROOF. Since clsA(G,M) = M ,  and h(C) is open, there exists p e A ( G , M )  

with p e h ( C ) .  I f  v e J  with pv = p,  then v e A ( G , M ) ,  as previously noted, and 

p e h ~ ( C ) .  Choose e e C  with Cc -a ev  by (3.10). Applying (3.9) with B = C, 

C = Cc-  1, the set involved becomes C-  ~ C Cc- ~ V (Vc-  1) - ~ = C-  ~ CCc- 1VcC- 1 

Since V is an arbitrary neighborhood of e, so is c- ~ Vc. The result follows. 

One should note that, in (3.11), the representations Za, "",Z, and e are a func- 



Vol. 12, 1972 BOHR COMPACTIFICATIONS 325 

tion of the syndetic set C alone, and do not depend on V. Note also that if C 

is discretely syndetic, then C is big; moreover, h(C) n N ~ ~ for every minimal 

ideal N.  

We now specialize (3.9) to the case when T is abelian. Recall that with this 

assumption, (G,M) is minimal. 

THEOREM (3.12). Let T be abelian and A , B  c T with hGv(A ) n hGv(B) ~ ~ .  

Then there exist continuous characters Z1, ' " ,Z ,  of ( T , J )  and 8 > 0 such that 

I z,(t)-- 11 < 8 (1 <- i < n) implies t E A - 1 B C V  for  every V C . ~ e ( ~  and 

every C ~ v. 

PROOF. It is easy to see that h~v(A)N hGo(B ) = h~o(A n B). By (3.6), there 

exists ~ ~ ( int~)cls~)h~o(A n B)) n h~o(A n B). Thus, ~ ~ (int ,~cls~)hGv(B)) 

n h~v(A n B).  Since v ~ A(G, M ) ,  it follows by (3.7) that there exist continuous 

characters Xl , '" ,Z,  of (T,~--) and 8 > 0 such that Iz~( t ) -11 <8(1 _<i_< n) 

implies B C V ~ t v  for every V~ de(3r" ) and C e v .  Moreover, atv = art = at 

implies ( B C V ) - ~ e ~ .  Since A e ~ ,  (BCV)t -1 n A  ~ ~ ,  and thus t ~ A - X B C V  

as desired. 

COROLLARY (3.13). 

1. Let  T be abelian, v ~ J and A, B ~ T with A ~ v, B ~ v. Then there exists 

continuous characters Z1, "" ,Z,  of (T,~Y-) and 8 > 0 such that lx,(t ) - 11 < 8 and 

(1 < i < n) implies t ~ A -  XBCV for  every V ~ .A/'e(~/--) and C ~ v. 

2. Let T be abelian and D discretely syndetic. Then there exist continuous, 

characters Za, "" ,Z,  of (T, 3-) and 8 > 0 such that i f  [zi(t) - 11 < 8(1 <_ i < n) 

then t ~ cls (D- 1DDs) for  some s ~ D -  1. Most  generally, i f  v ~ J, then t ~ ~ (cls 

(D-XDDs-1)[ s e Dr) (note by (3.10) that Dv ~ D ~ ~j). 

PROOF. 

1. Immediate by (3.12). 

2. Let v ~ J ,  and consider Dv ~ ~ .  Fix some element r ~ Dr. Then Dr-  ~ ~ v. 

Now apply (1) with A = B = Dr -~ to get characters Zx, "",~, and 8 > 0. Now 

suppose that s =_ Dr. Then Ds- 1 ~ v, and applying (1) wxth C = Ds- 1 will yield 

the desired result. 

Note in (2) that the characters Zl, "",~n depend on the f ixed  set Dr -~ and do 

not vary with s ~ Dr.  Also note that in addition to Dv ~ J~, we actually have 

that Dv is big. For, h ( O ) n  M open means that p ~ h(D) and D e p for some 

p ~ M.  If  v ~ J ,  then vp = p,  and D ~ vp implies Dv ~ p .  
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REMARK (3.14). 

1. If  T is discrete abe|ian, then the set involved in (3.12) is A-1BC. Thus, if 

D is discretely syndetic, then t~D-1DDs for some s~D -~ . 

2. Suppose we have 2 discretely syndetic subsets D, K .  Then Dr, K s ~ u  

with r~D -1, s ~ K  -~ by (3.10). Letting A = Dr = C, B = Ks, the set in 2 of 

(3.13) can be replaced by cls(D-~KDs). An obvious extension holds for 3 dis- 

cretely syndetic sets D, K, L. 

3. Let D be any subset of T. Then either D ~ u or D' ~ u, i.e., either D or D' 

is big. Thus, the conclusion of 1 of (3.13) holds for either D-~DDV or 

(D')- ~(D')(D')V, where VE d J P e ( ~  ) . 

4. We also claim that in the case that T is abelian, we can use A -~ i f A ~ u .  

This follows from the fact that if fi = {B- ~ t B ~ u}, then u is also a minimal 

idempotent and A-  t ~ ft. We omit the details. 

Applications of (3.13) yield some interesting characterizations of maximally 

almost periodic and minimally almost periodic topological groups when T is 

abelian. 

THEOREM (3.15) 

1. (T,~q-) is maximally almost periodic iff whenever a # e, then there 

exist B, C discretely syndetic subsets of T such that ar  -1) for 

some b t.J (By Iv J}. 
2. (T,J-) is minimally almost periodic iff cls(A-1BC) = T for all A, B, C 

discretely syndetic. 

PROOF, 

1. Suppose a6cls(C-ICBb) for some beBv and v e J .  Then by modifica- 

tions noted in 2 of (3.14), there exists 5 > 0 and a continuous character Z of 

(T,~7") such that Ix(a)- 11 => 5. The converse follows from [4, Corollary 1]. 

2. Suppose (T,J-) is minimally almost periodic and A, B, C discretely syndetic 

with cls(A-~BC) ~ T. Now again by 2 of (3.14), there exists s t  T, e > 0, and 

continuous characters Xl, "",Xn such that I Zi(t ) - 11 < e implies t~cls(A-~BCs). 

Then cls(A-~BCs) = [cls(A-1BC)]s # T and thus there exists b e T and a con- 

tinuous character X such that Ix(b)- 11_-__ 5. This is a contradiction. So 

cls(A-~BC) = T. The converse follows from I-4, Corollary 2]. 

The next few results show that the discretely syndetic subsets of T actually 

determine the topology of the Bohr compactification. Recall that the set of all 
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(U,V)  = { 7 [ y e G  and Uy n V  ~ Z;}, with U, V e u  and Vu = V, yields a 

neighborhood base for u in (G, r) [2, Prop. 11.14.1]. 

L~MMA (3.16). Let T be abelian, C c T with C e u  and Cu = C. Then 

t e C C C - 1 C  -1 iff  ut e (C,C)(C,C)  -1 .  

PROOF. Suppose u t e ( C , C ) ( C , C )  - I .  Then u t~e(C ,C)  for some ~ e ( C , C ) .  
Since T is abelian, ut~ = ~t, and ~t e (C, C). This means that C(~t) n C ~ ~ .  

Since Cc -~ e at for some c e C, then CC -1 e at, or C C - t t  -1 e ~. Since ~ e (C, C), 

then CC-  ~ e ~, from which CC-  1 t -  t n CC- ~ ~ EI and t e CCC- ~ C-  ~. Con- 

versely, t e C C C - ~ C  -~ implies Cs -~ n C  ~ Z ,  C(ts) -~ n C  ~ ~ for some 

s e T .  Since (Cu)s - t  = C(us), then C = Cu implies (Cu)s -~ n C = C ( u s ) n  C. 

~ ,  and C(uts) n C ~ ~ ,  giving the desired result. 

THEOREM (3.17). Let T be discretely abelian. Regarding T c G (i.e., iden- 

tifying t with utu), (cls~1r(CCC-~C-t)[ C discretely syndetic) is a neighbor- 

hood base for n(u) in (G/E,z). 

PROOF. Recall that rc:(G,z) -~ (G/E,z). By (3.11), each set cls~rc(CCC-1C - t )  

with C discretely syndetic is a neighborhood of n(u). 

We next show that if N ed/'~(,~(z), there exists A e u with Au = A and 

7r(A,A) ~ N.  Now there exists U, Ve u with Vu = V and rr(U, 11)c N.  Now 

W = U n Ve u. By [3, Lemma 2.6], there exists A e u with Au = A and h(A) ~ h(W). 

Now ~e(A,A)  implies ~ t e h ( A ) ~ - h ( W )  for some t e A  = Au .  Thus, u t e h ( A )  

c h(W) and t e Wu ,  whence ~ e (W, Wu).  Since (IV, Wu) c (U, Vu) = (U, Is), 

this yields the result. Note also that A is syndetic: if p e fiT, Ap = (Au)p = A(up), 

and up e M .  Also, q e M implies Aq ~ ~ ,  since Aq = ~ and r e M with qr = u 

would imply (Aq)r = A(qr) = Au = A = Zf, a contradiction. Now use [2, 8.15]. 

Finally, choose K closed in ~4r~(,~(z). There exists Le~A/'~(,~ with LL - t  c K. 

By the above paragraph, there exists C e u with Cu = C and re(C, C) ~ L. Then 

C is syndetic and rcr(c, c)  (c ,  c)  - t ]  c L L - I ~ K .  Then by (3.16), 

cls~rc(CCC-~C -~) = cls~r[(C, C) (C, C) - t ]  ~ cls~K = K.  This completes the 

proof. 

Using (3.14), one can produce some obvious modifications, e.g., replacing 

CCC-~CC -~ by CC-~s for some s e C -~ or C B C - I B  - t  for B, C discretely 

syndetic. 

We now extend this result to (T, ~"). 
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COROLLARY (3.18). Let Tbe abelian. Regarding T c G, l 
C discretely syndetic} is a neighborhood base for lh(u ) in (G/H(G,~),z(~)), 

where zq : (G, z(~)) -~ (G/H(G, ~),  z(~)) .  

PROOF. We have the following commutative diagram, 

(G,z) ~ (G/E,z) 
iS 

TiN "..t dp 
(G, z(~)) ~ (G/H(G,~), z(~) 

where t is identified with ut = utu. Now by (3.17), {cls,Tr(CCC-1C-1)I C dis- 

cretely syndetic} is a neighborhood base of  re(u). Then since ~b is a transformation 

group homomorphism between two almost periodic minimal transformation 

groups, q~ is open [6, Theorem (8.1)], and thus both open and closed. Since 

q6 cls~rc(CCC- i C-  1) = cls,(a)q ~ rc (CCC- 1 C-  1) = cls,ta)r q (CCC- 1 C- 1), the de- 

Sired result is obtained. 

One should note in passing that it was not necessary to use sets of the form 

cls,r h (cls~-CC- 1 C-  i U), where U ~ .#'e(~ r )  , as might be expected from (3.13). 

Thfs is due to the fact that (3.12) and (3.13) are stronger statements than simply 

assertions about the Bohr compactification's topology. Indeed, it does not seem 

possible to recover (3.13) by assuming the result of (3.18). In fact, if this were the 

case, then one could use the result of (3.18) to prove an assertion like 1 of  (3.13) 

witlaout using neighborhoods of  e in ( T , f ) .  This would yield many obvious 

contradictions. 

The original statement of  Folner's result uses Rezi(t) > 0, i.e., e = n/2. The 

following result shows that this statement is equivalent to letting e vary with 

U e ./fie(3-) in the case that T is abelian. 

LEM~A (3.19). Let T be abelian and ~: T ~ B ( T , J )  canonical. Then for 

erery N e./ffe(B(T, ZY) ) there exists continuous characters Z1,'",Z, of T such 

that Rez~(t) __> 0 (i = 1,. . . ,n) implies r 

PROOF. Let .,~ be the finite subsets of  continuous characters of  T, partially 

ordered by subset inclusion. If  F e . ~ ' ,  let E r = {alaeB(T,o~), Re~(a) > 0 

(~( ~ F)}, where ~ is the extension of Z to B (see (3.7)). Since E v is closed and 

e e EF(F e .~) ,  then {EvlF ~ .~-} is a closed filter base with the finite intersection 

proper ty .  We claim that n E v = {e}, which will complete the proof. First 

note that {e} = {a I ](a ) = 1 for every continuous character Z}. Now suppose 

a ~ B(T,.~) and ~(a) # 1 for some continuous character Z. We consider two 
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cases. First, if Re ~(a) < 0, then a ~ E z. Second, if Re ~(a) > 0 and 0 < arg ~(a) 

__< 7z/2, then choose N minimal such that arg(~)S(a) > zc/2. Then N > 1 and 

argO(a) < arg(~,)N-l(a) < r~/2, whence re/2 < arg(~)N(a) = arg(~) N- l(a)+argO(a) 

--< re. I f  3rc/2 < argO(a) < 2re, then 0 < arg(~)-l(a) < re/2 and by the above, 

~/2 < arg(~)-N(a)< r~ for some N.  Since the other containment is obvious, 

the conclusion follows. 

Note that $ = rip, where p : T ~  G, t ~ utu. Replacing [Z i ( t ) -  1] < e by 

Rezi(t)  > 0 by using this comment and (3.18) in the first paragraphs of (3.7) 

and (3.9), we can state both of these results using the form Rexi(t) > 0. 

We now return to the non-abelian case. Some of the modifications still hold 

in this case. For example, if B, C are discretely syndetic, then Bb -1, Cc -~ ~v 

where v e A ( G , M )  and b e B ,  c E C .  Applying (3.9) as in (3.11), we can replace 

C- 1CCVC- 1 by B-  1BCVC- 1. Also from (3.11), we can get t ~ ~ {C-  1CCVC- 1 ] 

V~.Are J - ) ) ,  which is not cls (C-1CCC -1) in general. Moreover, if O is any 

subset of T, then (3.9) will hold for either D- 1DDVD - 1 or (D')-  1(0') (D')V(D')-  1 

as in (3.14). Using the fact that if X is a continuous finite-dimensional unitary 

representation of (T,3"), then for every e > 0, ( t l l  [ Z(t) - I I[ < 5) is discretely 

syndetic, we have the following result which is similar to (3.15). 

THEOREM (3.20). 

1. (T,~7") is maximally  periodic iff whenever a ~ e, then there exist B ,C 

discretely syndetic subsets of T and V~.Ar~(3 -) with a ~ B - 1 B C V C - 1 .  

2. (T,~q") is minimally  almost periodic i f f  B - 1 B C V C  -1 = T for  all B, C 

discretely syndetic and V~..,ffe(~). 

One case in which (T, 3"), with T not necessary abelian, satisfies the hypothesis 

of  this section is when ~ ,  ~ o~ r = ( l i f t  ~ 9~(u) (t ~ T)}. To see this, recall by 

(2.8) that since H ( G , ~ )  ~ ER,  it is sufficient to show that H ( G , ~ )  ~ ER.  Now 

since z(~,) c z(~/'), then H ( G , ~ )  ~ {cls~ ~r Va z(JQ-neighborhood of u) =E,  

by [2,Prop. 15.13]. Thus, H ( G , ~ ) ~  ER,  and the desired equality is obtained. 

4. Another criterion for maximal almost periodicity 

In [1], it was proved that if (T,Y-) is a topological group with T abelian, 

and s ~ e, there exists a continuous character X with X(s) ~ 1 iff for some dis- 

cretely syndetic open symmetric neighborhood U of e, s r U 6 . By using Folner's 

result, it is easy to replace U 6 by U 5 . Our results enable us to obtain U 4, 
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THEOREM (4.1). Let  (T,~7) be an abelian topological group and s # e.  

Then  there exists a continuous character X with X(s) # 1 i f f  there exists a sym-  

metric open discretely syndetic neighborhood U of  e with s q~ U 4. 

PROOF. Suppose such a U exists. Since U is discretely syndetic, there exists 

we  U -~ = U with U w ~ u .  There exists Ve X e ( F  ) with w V  c U.  Now apply 1. 

of  (3.13) to the set ( U w ) - ~ ( U w ) ( U w ) V  = U - 1 U 2 w V  c U 4. Since s~ U 4, there 

exists a continuous character X with X(s) # 1. The converse follows from the 

original result. 

I t  was also shown in [1] that U 3 is the best result that could be obtained. 

The authors conjecture that U 3 is indeed obtainable by extensions of the methods 

used in this paper. Note that in (4.1), we can replace U 4 by cls(Uaw) for any 

w ~ U u .  For, sq~clsUaw implies s 6 U a w V = ( V w ) - i U w ) ( U w ) V  for some 

Ve affe(J ') ,  and, again, we can apply 1. of (3.13). 
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