BOHR COMPACTIFICATIONS AND A RESULT
OF FoLNER

BY

ROBERT ELLIS AND HARVEY B. KEYNEST

ABSTRACT

In this paper, we study the Bohr compactification of an arbitrary topological
group T with regard to obtaining relations between relatively dense (or dis-
cretely syndetic) subsets of T, and neighborhoods of the identity in the Bohr
compactification. The methods utilized are those algebraic techniques which
have been recently applied to topological dynamics (see [2]). For an
abelian group, we show that cls (4—1 A4a~1), for A relatively dense and a
€ A4, is usually a neighborhood of the identity, thus generalizing a result of
Folner [4]. Moreover, an analogous result is proved in the non-abelian case
under additional assumptions. Finally, we utilize these results to obtain a
generalization of a result of Cotlar-Ricabarra [1] concerning maximal almost
periodicity in abelian topological groups.

1. Introduction

The major goal of this paper is to make a systematic and unified study of the
Bohr compactification of an arbitrary topological group T. The methods to be
used are the algebraic techniques developed by Ellis in the study of topological
dynamics (see [2] for a general account); in particular, the techniques used in [3]
to study equicontinuity will be utilized extensively. The impetus for this study
came from an attempt to recover and generalize Folner’s topological assertions
in [4] concerning relatively dense (or discretely syndetic) subsets of the topo-
logical group and neighborhoods of the identity in the Bohr compactification.

The methods involved in Fglner’s paper are basically analytic, involving sub-
stantial use of Banach means on the original group and Fourier analysis. In this
paper, we avoid the use of Fourier analysis by looking at an algebraic represen-
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tation of the Bohr compactification which is particularly amenable to analysis

via finite-dimensional representations. The thrust of this study is to provide

generalizations in two directions. First, we obtain some more precise results in

the abelian case. Second, we do obtain a non-abelian theory which is based on

the asumption that the Bohr compactification does assume the desired form (this

is always obtained in the abelian case). We will comment further on this assumption.
To be more precise, the following result is obtained in [4].

THEOREM. Let T be an abelian topological group, A a discretely syndetic
subset of T, and V a neighborhood of the identity e. Then there exist characters
X1s > Yn Such that if te T and Rey,(t) 2 0 (r = 1,---,n), then te AA"*AA"'V.

The proof involves analyzing, via the translation invariant mean dominated
by the Banach upper mean, the characteristic function of a uniform open swelling
AV, of A, and obtaining a positive definite function. The main result invoked
is Godement’s decomposition, on locally compact groups, of such a function
into an almost periodic function and a function h with l h|? having 0 mean value.
The proof proceeds by estimating the Fourier coefficients of the almost periodic
function, In our paper, we obtain the following generalization: If A is a discretely
syndetic subset of an abelian topological group T, then there exist continuous
characters y,,-++,x, and ¢ >0 such that te T with lx,(t) ~1 <e(1£rsgn
implies tecls(A~t44a~") for “most’” ae A. In addition to reducing the num-
ber of times A is used from 4 to 3, it indicates that the characters can be picked
independent of neighborhoods of e.

The methods employed also give results for non-abelian T, viz: If 4 is dis-
cretely syndetic in a topological group T, then there exists continuous finite-
dimensional unitary representations y,- -, Ym and &> 0 such that te T with
H () —1 H <e(t £r < m)impliestc A"*AAVA~! for every neighborhood V
of e. However, in this case the basic assumption of our approach (H(G,#) > E;
see below) is not automatically true as it is for abelian groups 7. Indeed it is not
an easy assumption to verify in general, and in particular we do not know whether
it is true for amenable groups, T. Thus the Fourier analysis technigues give results
for amenable non-abelian groups which we are unable to obtain. The non-abelian
theory is not devoid of interest, however, for the following reason. Let (X, T)
be a compact minimal transformation group, (Y,T) its maximal equicon-
tinuous factor, and ¢:(X,T) 5 (Y, T) the canonical map. Letx,eX and
Vo = ¢(xo). Then the maps t— x¢t: T—>X and t - yit: T— Y induce
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topologies 7 and & respectively on T. The various results about the Bohr com-
pactification of T discussed here may be viewed as results concerning the rela-
tionship between 7 and & (When X is taken to be the universal minimal set
for T, then Y is just the Bohr compactification). Now the methods used in this
paper may be applied to the above more general situation to give similar results.
Here simply verifiable conditions (e.g., point distal) may be imposed on (X, T)
to guarantee that the requisite assumptions be satisfied.

Finally we consider the Cotlar-Ricabarra [1] result for maximal almost perio-
dicity, which states that in an abelian topological group T, if se T with s 7 e,
then there exists a continuous character y with x(s) # 1 iff s¢ U for some dis-
crete syndetic symmetric open neighborhood U of e. We obtain U* easily,
and, in fact, cls(U® x). We believe that the methods of this paper can be
pushed to yield U?, the best obtainable result.

We shall assume the notation of [2] in general. However, for the sake of
completeness, we include the following brief summary of the relevant facts. Thus
(T, ) will denote an arbitrary Hausdorff topological group, and BT the Beta-
compactification of the discrete underlying group T. Also, % will denote the
continuous functions on BT. ¥ is, of course, canonically jsomorphic to the
bounded functions on T. Recall that there is a correspondence between pointed
transformation groups (i.e., having a distinguished point with dense orbit) and
T-subalgebras & = ¥, i.e., &/ is a uniformly closed subalgebra of % such that
fe s implies tf e/ (teT), where {tf,s) = {f,stD>. If (X, x,y, T)is pointed and
&/ is an algebra corresponding to it (in general, there are many such algebras),
then & is isomorphic to ¥(X). There are many universal minimal sets for T
discrete in ST ; we shall distinguish one and denote it by M. These minimal sets
correspond to minimal right ideals of the semigroup ST. From the general theory
of these semigroups, it follows that there exist idempotents in M, and we again
distinguish one and denote it by u. We then have that G = Mu is a group. We
let J denote the set of idempotents in M.

It turns out that an algebra corresponding to M is Aw) = {f | fe¥,fu=f},
and that all minimal sets of T have representative algebras contained in A(u).
Thus, we let € be the unique representative algebra for the universal equicon-
tinuous minimal set (there is only one in this case). & is the algebra of aimost
periodic functions [2, Proposition 15.7].

In general, the way that one brings the topology 4 on T into the algebraic
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picture is to consider the T-subalgebra # of bounded right uniformly continuous
functions on (T, 7) [2; 2, 3 of Notes of Chapter 9]. It turns out that the minimal
version of #, namely %, = Z N WU(u), is sufficient for our purposes.

With every T-subalgebra o/ of U(u), we associate a group g(<¢) = 4
= {0eG|fu=f(feof)}. Thus, we will consider the groups E = ¢(&) and
R = g(#,).

If o is a T-subalgebra of A(u), then & induces a topology (/) on G as
follows: if K = G, then aecls, K iff f*< f*u (fe o/, the real-valued func-
tions in /). We have that (G, (%)) is always compact but, in general, satisfies
none of the separation axioms. We will consider 7(£) and t(%,) in this paper.

Finally, we shall frequently use the notations of [3].

2. Bohr Compactifications

NotATION (2.1). We will denote by B(T, 7) the transformation group | & N2 |.
Note that £ NZ = & N A, since & = & NA(u) [2, Prop. 15.7], and thus is
a minimal subalgebra.

REMARK (2.2). B(T, ) is a compact topological group for which (B(T, 7),(T,7))
is a jointly continuous transformation group with the action induced by a ho-
morphism (not necessarily injective) with dense image. Moreover, if Gis a com-
pact topological group on which (7,9 actsin a jointly continuous fashion via a
homomorphism with dense image, then there exists a transformation group
homomorphism ¢: (B(T,9),(T,7)) > (G, T) (thus ¢ is a group homomorphism).
Thus, B(T,7") is the Bohr compactification.

DEeFNITION (2.3). Let x be a bounded continuous finite-dimensional repre-
sentation of (T,7). If G, = cls(x(T)), then G, is a compact topological group
satisfying the condition of Remark (2.2) Let 7/, = U(u) be an algebra such
that (l&le s (T,9)) = (G, (T, 7). Then <, is called a representative algebra
Jfor x.

To see that G, is a compact topological group, it is sufficient to show that G,
is closed in the appropriate version of C™, as || x(1)]| < M for some fixed M.
Now it is clear that det(x(t)) is also uniformly bounded (in some polynomial
of M). If |det(y(f)] # 1, then either [det(x())| or |det(x(t~1)| > 1, say the
former. Then ldet(x(t"))l - o0, a contradiction. Hence, ]det(x(t))] =1, and
1(T) = SL(n, C), which is closed in C"*, This means that G, = clsy(T) is also
closed in C™,
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All representations considered will be bounded.

Recall that if (%,) is a family of T-subalgebras of %, then \/ &, is the least
T-subalgebra containing all the %,’s.

LEMMA (24). € NZ = \/{MXIX a continuous finite dimensional repre-
sentation of (T,7)}.

Proor. First notice that Zp < Z (pe BT) and the fact that & is regular [2,
Definition 11.19.1] implies & N Z is regular. It then follows that for every y,
Ay c &N and thus \/ A, cENZ.

Next consider the topology 7 ; induced on T by considering the orbit of the
identity ee [ ENA ] Since the canonical map =: (7,7 ) - ]é” N ﬂ] is continuous,
we have that J > 7, . Moreover, since (z(T),(7,)) is a dense subgroup of the
compact group ]é” NZ l , it follows that the continuous finite-dimensional repre-
sentations of (n(T),(7;)) separate points of Ié” n%’l . It then follows that the
continuous finite-dimensional representations of (7,.7,) separate points of

& m%’[ and, since J > 7, the continuous finite-dimensional representations

of (T,7) separate points. Again by the regularity of & N#%, \/, > §NZ#, and
thus \/&/, = ENX.

LEMMA (2.5). (%) = 1(4,).

PrRoOF. We first show that Zu = Z N W(u). Clearly Z N (u) = Zu, and
since Zu < %, then Zu = % N U(u).

Finally, ©(%) = 1(%u) = 1(# N AW)) = «(#,) by [2, 4 of (11.11)].

The next result provides the first identification of |& N /. This holds inde-
pendent of any commutativity assumptions on T

LEMMA (2.6). |€ NZ| ~ (G/ER,(6)).

ProoF. Consider the canonical map |&| > |& N4,|. Now|&| = (G/E, (&)
by [2, (15.8)]. This induces a homomorphism ¢:(G/E,(€)) — Ié’ m%’ul given
by ¢(Epu) = p|€NA,.

Suppose ¢(Epu) = u| & N A, Then p|&NA,=uléNA, and
pueg( N#,) = ER [2, (14.16)]. Next, let yeE, deR. Then ¢ (Eydu)
=y5] & n@u=u| & NA,. It follows from these remarks that l(o@ ns%ul =((G/E)/
(ER/E), (&) = (G/ER,1(8)), as desired.

Since the results of [2, (15.6) to (15.8)] also show that |&| ~ (G/E,(2)),
it also follows that |# N%,| ~ (G/ER,t(2)).
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The major problem with the above characterization is that the role of J via
the algebra Z is obscured. The next result settles this problem.

LemMA (2.7).
1. The canonical map n:(G,7(§ NA)) —» (G/ER,U(&)) is continuous.
2. |6 " %#| ~ (GIER,«(6 N &) ~ (G/ER,«(R)).

Proor. 1. It is equivalent by (2.6) to show that i, : (G,7(& N %)) > |& N A,
y - y|€ N A, is continuous. Since €(|& N#|) = & N, it is sufficient to show
that fe & NZ implies fr, is continuous on (G, (€ N#)). But by [2, Lemma
1412] with F =C c&NRZc & = F¥, it is immediate that fr, is continuous
on (G,1(€ NA)). The result follows,

2. Since (G, (& N %)) is compact and (G/ER,1(&)) is compact Hausdorff, it
follows by 1, that (G/ER, ©(& N#))~(G/ER, 1(£)). Moreover, since (G'ER, (%))

is compact and (€ NZ) c ©(#) on G/ER, we also have that (G/ER,t1(§ N X))
~ (G/ER, (%))

Note that if T'is discrete, Z = % and we have that the Bohr compactification
is (G/E,7), in agreement with [2, Prop. 15.8]. Also the canonical homomorphism
from T into (G/ER,®(#)) is t = ER(utu).

The next result is the desired identification of B(T,.7") when T is abelian. The
idea is to characterize ER in a form in which the role of # is transparent and
which will enable us to do further analysis.

Recall that H(G,%) = N {cls,,)V |V a 1(#)-neighborhood of u}, [2, Re-
mark 14.10]. Note that, of course, # & (), but all the comments are still
applicable, since 7(%#) = 1(%,).

THEOREM (2.8). If T is abelian, then B(T,9) ~ (G/H(G, %), ©(%)).

Proor. By 2.7, it suffices to show that H{G,#) = ER. Since 1(%) <1, it
follows by [2, 15.11] that H(G,Z) > N {clstWI W a t-neighborhood of u} = E
(the latter equality is known at this point only for T abelian). Moreover, clearly
H(G,%) > R. Finally, since Za < #(ze G), then H(G,Z%) is a subgroup of G
and thus H(G,%) > ER.

Next, consider the canonical map =n:(G,tu(%#)) —» (G/ER,7(%#)). Let U be a
closed neighborhood of n(u). Then =n(W) = U for some t(£)-neighborhood W of
u, and n(Cls, )W) < cls,gyn(W) < cls, (U = U. Thus, n(H) = n(cl, 4)W) = U,
whencen(H) < N {U ] U a 7(%)-neighborhood of n(u)} = =(u), since (G/ER, ©(%)
is Hausdorff. This means that H(G,#) < ER.
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With regard to the assumption H(G, #) = ER, we have already noted
that the assumption H(G,7) (=N {clstI Waz-neighborhood] of u}) = E is
sufficient. This latter assumption is false in general. The group T = SL(2,R),
provides a counter-example. This is partially due to the facts that there
exist non-trivial proximal flows for SE (2, R). i.e., minimal flows for
which every pair of points get arbitrarily close under the group action,
and that there are no almost periodic functions on SL(2,R). It is conjectured
that if the group T does not admit any non-trivial minimal proximal flows, then
H(G,7) = E. (N.B. This conjecture has recently been verified. Since it is known
that all nilpotent groups satisfy the hypothesis, the following theory holds in this
case). Of course it is possible that H(G,t) # E but H(G,#) = ER. However, no
conditions are presently known which enable one to directly compute H(G,%)
without computing H(G,1).

3. Generalizations of Folner’s results

In this section, we will develop a unified approach to Fglner’s results, The
standing assumption on (7,7) (7 will always stand for a HausdorfT topological
group topology for T) is that B(T,.7) =~ (G/H(G,%),7(®)). We also let#"( ()
denote a neighborhood system. Also recall that if 4 = T, we define h(4)={p [ pefpT
and Aep}. Thus h(4) NG = {«|acG and Aea}, which will be denoted
he(A4).

LemMA (3.1). Consider (T,7) and let A< T, UeA (T), where e is the
identity of T. Then there exists f: T — [0,1] uniformly continuous such that
fla=0,f[T-4U=1.

Proor. It is well-known that we can find g: T — [0, 1] uniformly continuous
such that g(e) =1, gl T—-U =0. Now define h(x) = sup,. ,g(xy~"). It is
direct to verify that h[ A=1, h] T — AU = 0 and % is uniformly continuous.
Finally, let f=1—h.

Suppose that we have a continuous finite-dimensional representation y of
(T,7). Then as a map on T with its discrete topology, y has a continuous ex-
tension § to fT.

LEMMA (3.2). f is a homomorphism of BT.

Proor. Let pefT, (1) a net in T with t, - p. If teT, then
2(pt) = g(lims, 1) = lim3(e,) = lim (@) 2(®) = [Lm2()]20 = 2p) 1)
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Now ifg,r € BT and(t,) anet in Twith ¢, — r, g(lim g¢t,) = lim#{(qt,)=1im 7(q) £(t,)
= 1@20).

For the next lemma, recall that if ¢ ¢ K = fT and fe %y, then fX €% is de-
fined by <f*, 1) = sup (fk,t>.

. kek
LemMma (3.3). Let C< T < BT and fe%y, the real-valued functions. Then

1129 < FHOZ € if hg(C) # B

PrOOF. Since hy(C) < h(C), the first inequality follows by [2,11.8]. Now let
peh(C) and teT. Since h(C) is a fT-open neighborhood of p, there exists a
net (s,)eC (equivalently, h(s,)eh(C)) such that s, — p. Then s.t— pt and
ooty = <fopty = im{fys,0y = im{fs,ty < supedfs,ty = (fSty. Con-
sequently (f*©, ¢ = supy,) {fa,1) < (FEt1y,and so MO < f€. Since C S h(C).
we have f*© = f€,

The following result is crucial to our analysis.

LemMmA (3.4). Let Bc T, Ceu. Then cls ghs(B) = ho(BCV) for every
Ved (T).

Proor. Let VeV (7). If BCV = T, the result is obvious. So assume
BCV # T. By (3.1), there exists f:(T,7) — [0,1] uniformly continuous
such that f|BC =0, f|T—BCV = 1.

Now let aecls,4h(B). By the definition of the 7(#)-topology fu < ]"G(B)u.
Then by (3.3), fu < f%u, and (f,a) = (fu,e) < SPu,e) = fPuy. If
seB, reC, then {fs,r) = {f,sr> = 0, since sre BC. Now Ceu implies that
there exists a net (¢,) e C such that f, — u in the ordinary topology of BT. It
follows that (f%t> > (f%u). Since (f% t> = supp{ft,t,> =0, then
{fB,u> = 0 and (f,2)> = 0. We will complete the proof by showing that ye G
with (f,y> = 0 implies y e hge(BCV) i.e., BCVey. Otherwise T — BCV €y, and
yeh(T — BCV). If (s,) is a net in T — BCV such that s, —»y in BT, then
8> = (7). But {f,s,> =1 for all v implies {f,y7) = 1, a contradiction.
This completes the proof.

The next set of comments requires some distinction between the abelian and
non-abelian cases. First consider the left transformation group (G, M) with com-
position as the action. If T is abelian, (G,M) is minimal. For if me M, and
teT, then ut = utueG and mf = umt = utm. Since {mt|te T} is dense in
M , this shows our assertion. When T is non-abelian, the situation is somewhat
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different. In this case, we know from the general theory that there exists a G-almost
periodic point pe M. Moreover, since (G,M, T) is a bi-transformation group,
then {pt|te T} is a dense set of G-almost periodic points in M, and thus the
G-almost periodic points A(G, M) satisfy cIs(4(G,M)) = M. Finally, there are
G-almost periodic idempotents. For if pp = pand gp = v, then (qu)p = gp = v
and qu e G, whence v is G-almost periodic. It is an interesting open question
whether u is also G-almost periodic. To take into account the fact that, in general,
we can no longer fix the idempotent to be u, we need the following observations
about the groups Gv(veJ, the idempotents of M). Recall that in the general
algebraic theory, the idempotent was arbitrarily chosen. Since we could carry
out the general theory for Gv, where veJ, it makes sense to speék of the
() (= 1(#v) = 1(#%,)) topology on Gv.

LemMa (3.5). Let w,veJ. Then ¢:(Gw,tu(%)) - (Gv,1(%#)), ow — av, is an
isomorphism.

Proor. Clearly ¢ is bijective. Thus, we need only show that ¢ is continuous.
Let awecls, 4 (Kw). Then faw < (f*")w(feZz = # N%y). Pick ge#y and
peBT. Then {(go)v, p) = {gaw, p) = {gow, vp) = (g""Iw,vp) = {(g"")w,vp)
< (@ whop) [2, 4 of 117] = (& w,op) = (& )Iwv, p, = (g, p).

Thus, gav < (g%°)v, from which it follows that av = P(aw) ecls,4)(Kv) =
= cls () (¢(Kw)).

The content of (3.5) is that analysis is identical on each group Go(veJ). In
passing, one should note that the Z,-topology on M[3, Def. (2.2)] coincides
with the Z,-topology on M (v,weJ).

LemMA (3.6). Let pc A(G,M) and veJ with pp =p. Let Bep. Then
(int, z)Cls, ayho(B)) N hg(B) # F, where hg,(B) = h(B) N Gv.

PROOF. Since Be p = pv, then pe h(B) N Mv = h(B) N Gv. Thus Gv<clsy,(Gp)
and h(B) an ordinary neighborhood of p implies that F-h(B)> Gv for
some finite subset F of G. Then F-(h(B)N\Gv) = F - hg(B) > Gv, from
which it follows that int, g cls, ah,(B) # &. This of course implies that
(int @ Cls.ayhe(B)) N he,(B) # .

In preparation for the key lemma to obtain our results, we need the following
observations. We have noted that the canonical homomorphism from T into
B(T,7) ~ (G/H(G,Z#),1(#)) is t > H(G,%)(utu). This leads to the natural
extension ¢: ST — B(T,7),$(p) = H(G,Z)(upu). Now let x be a finite-dimen-
sional continuous representation of (T,.7). Then of course, y has an extension
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i to B(T,7) satisfying the equations ¥(¢(1)) = J(H(G,R)utu) = y()(teT).
In addition, we have already defined the extension § of x to ST (see (3.2)). Since
;‘(q‘)] T=y= 2] T, we have by continuity that ¢ = %, i.e., ¥(¢(p)) = 2(p) (pe BT).

LemMMA (3.7). Suppose that ue A(G,M). Let BT, and assume that
he(B) # . Then there exist continuous finite-dimensional unitary represen-
tations ¥y, s of (T,9), >V, and aechg(B) such that if ” xi(t)—I[[ <e
(1 £i £ n), then BCVeotu for every neighborhood Ve (T) and every
Ceu.

Proor. Since hg(B) # &, it follows that there exists o€ hg(B) such that
o € int, yCls  gyh6(B).

Now recall that B(T,.7) = (G/H(G,%),t(%)). We claim that if N is a ©(#)-open
neighborhood of y, then there exists continuous finite-dimensional unitary repre-
sentations x;,++,%, of (1,.97) and &> 0 such that if | 2,(8) — 2:(»)|| <&, then
n(f)en,(N), where %; is as in (3.2) and =n,:(G,©(£)) 5 (G/H(G, &), 1(#%)) is
the canonical map. First note that ¢ |G = =, , where ¢ is the above mentioned
map. Now 7,;(N) = ¢(N) is an open neighborhood of =;7 in B(T,.7). Then
choose finite-dimensional unitary representations y,,-:-,%,, and ¢ > 0 such that
“ T, B) — Xilmyy) “ <e (i=1,--,n) implies n;femn,N. Since H 2B — %) “
= || Zi(m1) — Z:(myy) ||, this means that | 2,(8) — 2:(») | <& (i = 1,--,n) implies
m,fen,N, as asserted.

Next, we apply the above paragraph to L = int g Cls,)s(B), to produce
1>+ >%a» €>0 such that | £(8) ~ ()| <& implies m,(B)en,(L). Now let
teT with |z()—1I|<e (1 £i<n). Then || fietu) — 2@ | = || 2@ 2:(10)
—2@] 5 12@)] |20 -26)] £ [20-1] [20]  |20-1] <
(1 £ i £ n), since y; is unitary. Thus, n,(«tu) e n,(L), and atu € H(G, Z)cls, 4L
= cls, gL, by [2, Lemma 14.7]. Now cls gL < clsahe(B) < he(BCV) for
every Ve 4 (9) and Ceu (3.4). Thus, BCV eatu, as desired.

Note thatif veJ, ve A(G, M) and hg,(B) # &, then (3.7) holds with BCVe atv
for every Ve A (7)) and Cev.

The next result constitutes the major theorem of this section. We will derive
several consequences which will require distinguishing between the commutative
and non-commutative cases, and which in turn will lead to several generalizations
of [4].

DEeFINITION (3.8). Let A < T. Then A is big if there exists a minimal right ideal
N of BT such that h(A) "N # .
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One should note that as with the idempotent u, the minimal ideal M was
chosen arbitrarily. Thus, we could have performed all of our analysis in any
minimal right ideal. Thus, if 4 is big, there is no loss of generality in assuming
hA) NM # &. Since h(A)NM is open in M, h(A)NAG,M)# . If
pe A(G,M) Nh(4) and pv = p, then hg,(4) # &, and ve A(G,M).

THEOREM (3.9). Let B < T such that B is big. Then there exist continuous
finite-dimensional unitary representations yy,, %, of (T,7), €¢>0, and v a
minimal idempotent such that if | x(t) —I| <e(l < i £ n),thente B~'BCVC~!
Jor every Vet (J) and Cev.

ProoF. By the above comment, there exists v* = v € A(G, M) with h;,(B) # &.
By (3.7), there exists « € hg,(B) such that BCV eatv for every Ved ' (J) and
C €. Thus, (BCV) (at) € ». Now it is direct to verify that (BCV) (at) = t~[(BCV )]
Thus ¢t~[(BCV)x]ev. Moreover, if se(BCV)x, then (BCV)s~'ea. Since
Beua, (BCV)s™' N B # J, whence s € B-'BCV. Thus (BCV)x = B-!BCV. Now
Cev implies t~'[(BCV)a] NC # &. Hence t~![B~'BCV]NC # &, from
which it follows that t e B-*BCVC~!, as desired.

The first application of (3.9) is to discretely syndetic sets.

LemMA (3.10). Let C be discretely syndetic, and v be a minimal idempotent.
Then there exists ce C with Cc™lev.

ProoF. Weclaimthat CoNC # . Forif CoNC = ¢, then & = (Co N Cy
=Cv*NCv=CvNCv=_Cp, which is a contradiction [2, Lemma (8.15)].
Thus ce Cv for some ¢ € C. This means that Cc~!ev,

Note that in general, if pe N, a minimal ideal, then Csep for some seT.

The next result is the non-abelian version of Felner’s result.

CoROLLARY (3.11). Let C be discretely syndetic. Then there exist continuous
finite-dimensional unitary representations yi,-, %, of (I,7) and &> 0 such
that if “ () — I” <e(l £iZ n), then te C-*CCVC1 for every Ve N (7).

Proor. Since clsA(G,M) = M, and h(C) is open, there exists pe A(G, M)
with peh(C). If veJ with pv = p, then v € A(G, M), as previously noted, and
pehg(C). Choose ¢ e C with Cc~! ev by (3.10). Applying (3.9) with B = C,
C = Cc~!, theset involved becomes C~1C Cc= 'V (Ve~Y)"1=C~1CCc™VcC~1.
Since V is an arbitrary neighborhood of e, so is ¢=*V¢. The result follows.

One should note that, in (3.11), the representations y,, -+, x, and ¢ are a func-
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tion of the syndetic set C alone, and do not depend on V. Note also that if C
is discretely syndetic, then C is big; moreover, h(C) "N # ¢J for every minimal
ideal N.

We now specialize (3.9) to the case when T is abelian. Recall that with this
assumption, (G, M) is minimal.

THEOREM (3.12). Let T be abelian and A,B < T with hg(A) N hg(B) # &.
Then there exist continuous characters x;,+-,y, of (T,7) and & > 0 such that
,xi(t)— 1| <& (1 £iZn) implies te A~'BCV for every Vc N (T) and
every Cev.

Proor. Tt is easy to see that hg,(A4) N hg(B) = hg(A N B). By (3.6), there
exists o€ (int,)Cls (ayhe,(4 N B)) Nhe,(A N B). Thus, o € (int, g,Cls a)hs.(B))
N hg(A N B). Since ve A(G, M), it follows by (3.7) that there exist continuous
characters y,,'*,%, of (T,7) and &> 0 such that ]xi(t) - 1| <gl<isnm
implies BCV eatv for every Ve 4 ,(7) and Cev. Moreover, atv = avt = at
implies (BCV) 'eua. Since Aea, (BCV)t"' NA# &, and thus te A~'BCV
as desired.

COROLLARY (3.13).

1. Let T be abelian, veJ and A, B< T with Aecv, Bev. Then there exists
continuous characters xy,+, Y, of (T,7") and € > 0 such that | () —1 I <eé& and
(1 £ign)implieste A~'BCYV for every Ve /' (7) and Cev.

2. Let T be abelian and D discretely syndetic. Then there exist continuous,
characters X1,y % of (T, J") and &> 0 such that if Ixi(t) — 1| <gl=ign)
then tecls(D~'DDs) for some se D~'. Most generally, if ve J, then te N {cls
(D~'DDs~1)|s e Dv} (note by (3.10) that Dv N\ D # ).

PROOF.

1. Immediate by (3.12).

2. LetveJ, and consider Dv # . Fix some element re Dv. Then Dr~tev.
Now apply (1) with 4 = B = Dr~! to get characters x;, -+, %, and £ > 0. Now
suppose that s=Dv. Then Ds~'ev, and applying (1) with C = Ds~! will yield
the desired result.

Note in (2) that the characters x4, '+, x, depend on the fixed set Dr~! and do
not vary with s e Dv. Also note that in addition to Dv # J, we actually have
that Dv is big. For, h(D) "M open means that pe h(D) and Dep for some
peM.Ifvel, then vp = p, and D evp implies Dvep.
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ReMARK (3.14).

1. If Tis discrete abelian, then the set involved in (3.12) is A=*BC. Thus, if
D is discretely syndetic, then te D~'DDs for some se D~1.

2. Suppose we have 2 discretely syndetic subsets D, K. Then Dr, Kseu
with re D™, se K~! by (3.10). Letting A = Dr = C, B = Ks, the set in 2 of
(3.13) can be replaced by cls(D~*KDs). An obvious extension holds for 3 dis-
cretely syndetic sets D, K, L.

3. Let D be any subset of T. Then either Deu or D' eu, i.e., either D or D’
is big. Thus, the conclusion of 1 of (3.13) holds for either D-1DDV or
(D)~Y(D'XD")V, where Ve N (T).

4. We also claim that in the case that T is abelian, we can use A"t if Aeu.
This follows from the fact that if # = {B~*| B eu}, then u is also a minimal
idempotent and A~!e 4. We omit the details.

Applications of (3.13) yield some interesting characterizations of maximally
almost periodic and minimally almost periodic topological groups when T is

abelian.

THEOREM (3.15)

1. (T,7) is maximally almost periodic iff whenever a % e, then there
exist B, C discretely syndetic subsets of T such that a¢cls(C~'CBb-1) for
some be | {Bv|velJ}.

2. (T,9) is minimally almost periodic iff cls(4=*BC) = T for all A, B, C
discretely syndetic.

Proor,

1. Suppose a¢cls(C~1CBb) for some beBv and v €J. Then by modifica-
tions noted in 2 of (3.14), there exists ¢ >0 and a continuous character y of
(T,7) such that |y(a) — 1| = . The converse follows from [4, Corollary 1].

2. Suppose (T,.7) is minimally almost periodic and A, B, C discretely syndetic
with cls(A~!BC) # T. Now again by 2 of (3.14), there exists se T, ¢ >0, and
continuous characters y,---, ¥, such that [ x:(6) — 1{ < ¢ implies ¢ ecls(4~!BCs).
Then cls(4~*BCs) = [cls(A"*BC)]s # T and thus there exists be T and a con-
tinuous character y such that | by —1 | = ¢. This is a contradiction. So
cls(A='BC) = T. The converse follows from [4, Corollary 2].

The next few results show that the discretely syndetic subsets of T actually
determine the topology of the Bohr compactification. Recall that the set of all
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(U,V) = {y|yeG and UynV # &}, with U,Veu and Vu =V, yields a
neighborhood base for u in (G, 7) [2, Prop. 11.14.1].

LemMA (3.16). Let T be abelian, C < T with Ceu and Cu = C. Then
te CCCC~! iff ute(C,C)(C,0)~ L,

Proor. Suppose ute(C,C)(C,C)~*. Then utae(C,C) for some ae(C,C).
Since T is abelian, uto = at, and ate(C,C). This means that C(at) N C # .

Since Cc~! e at for some ce C, then CC~*eat, ot CC~*t "t ea. Since a e (C,C),
then CC-tea, from which CC~t~* N CC~! # @ and te CCC-'C-1,Con-
versely, te CCC~*C~! implies Cs~' NC # &, C(ts)"* NC # J for some
seT. Since (Cu)s~! = C(us), then C = Cu implies (Cu)s ' NC = Clus) N C
# &, and C(uts) N C # &, giving the desired result.

THEOREM (3.17). Let T be discretely abelian. Regarding T < G (i.e., iden-
tifying t with utu), {cls (CCC~*C~Y)|C discretely syndetic} is a neighbor-
hood base for =n(u) in (G/E,7).

Proor. Recall that =:(G,t) - (G/E,1). By (3.11), each set cls,n(CCC~1C~1)
with C discretely syndetic is a neighborhood of n(u).

We next show that if Ne (1), there exists Aeu with Au = 4 and
n(A,A) = N. Now there exists U, Veu with Vu = Vand »(U,V) = N. Now
W= U NnVeu.By[3, Lemma 2.6], there exists A € u with Au= A4 and h(4) = h(W).
Now o e (4, A) implies af € h(A) = h(W) for some te A = Au. Thus, uteh(4)
< h(W) and te Wu, whence ae(W,Wu). Since (W, Wu) < (U,Vu) = (U, V),
this yields the result, Note also that A4 is syndetic: if pe 8T, Ap = (Au)p = A(up),
and upe M . Also, ge M implies Aq # J, since Ag = (J and re M with gr =u
would imply (Aq)r = A(qr) = Au = A = J, a contradiction. Now use [2, 8.15].

Finally, choose K closed in A", (7). There exists Le A", with LL™! c K.
By the above paragraph, there exists Ceu with Cu = C and #n(C,C) < L. Then
C is syndetic and =[(C,C)(C,C)~'] <« LL''< K. Then by (3.16),
cls,n(CCC1C~Y) =cls n[(C,C)(C,C) ] =cls,K = K. This completes the
proof.,

Using (3.14), one can produce some obvious modifications, e.g., replacing
CCC~1CC~! by CC~*'s for some sC~! or CBC~'B-! for B, C discretely
syndetic.

We now extend this result to (T,7).
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COROLLARY (3.18). Let The abelian. Regarding T < G, {cls 4,n,(CCC~1C)|
C discretely syndetic} is a neighborhood base for =,(u) in (G/H(G,%),(%)),
where n:(G,1(%)) - (G/H(G,%),1(%)).

Proor. We have the following commutative diagram,

PR 5 GIEy)
T n 9
(G, «(#) - (G/H(G,%),«(%)
‘where t is identified with ut = utu. Now by (3.17), {cls,n(CCC“C“)[ C dis-
cretely syndetic} is a neighborhood base of n(u). Then since ¢ is a transformation
group homomorphism between two almost periodic minimal transformation
groups, ¢ is open [6, Theorem (8.1)], and thus both open and closed. Since
¢ clsn(CCCIC™1) = cls, gy (CCC™'C™1) = cls gy (CCC~1CY), the de-
sired result is obtained.

One should note in passing that it was not necessary to use sets of the form
cls,qym, (clsyCC~1C~1U), where Ue N (7), as might beexpected from (3.13).
This is due to the fact that (3.12) and (3.13) are stronger statements than simply
assertions about the Bohr compactification’s topology. Indeed, it does not seem
possible to recover (3.13) by assuming the result of (3.18). In fact, if this were the
case, then one could use the result of (3.18) to prove an assertion like 1 of (3.13)
without using neighborhoods of e in (7,77). This would yield many obvious
contradictions.

The original statement of Falner’s result uses Rey;(f) = 0, i.e., ¢ = /2. The
following result shows that this statement is equivalent to letting & vary with
Ue A (7)) in the case that T is abelian.

LemMMA (3.19). Let T be abelian and y:T - B(T,J) canonical. Then for
erety Ne N (B(T,J)) there exists continuous characters yy,--,x, of T such
that Rey;(£) =2 0 (i = 1,---,n) implies Yy(H)eN.

Proor. Let # be the finite subsets of continuous characters of T, partially
ordered by subset inclusion. If Fe#, let Ep = {alaeB(T,y), Rejg(a) = 0
(xe F)}, where j is the extension of y to B (see (3.7)). Since Ep is closed and
ec Ex(Fe#), then {E;|F e} is a closed filter base with the finite intersection
property.- We claim that NE = {e}, which will complete the proof. First
note that {e} = {a , #(a) = 1 for every continuous character y}. Now suppose
aeB(T,%#) and j(a) # 1 for some continuous character y. We consider two
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cases. First, if Rej(a) < 0, then a ¢ E, . Second, if Rej(a) = 0 and 0 < argj(a)
< n/2, then choose N minimal such that arg(5)"(a) > /2. Then N >1 and
arg () < arg()N~'(a) < 72, whence 72 < arg(p)(a) = arg(D)¥~*(a) +argi(a)
s n. If 3n/2 £ argg(a) < 2r, then O < arg(})~'(a) £ n/2 and by the above,
7/2 < arg(y)"N(a) < = for some N. Since the other containment is obvious,
the conclusion follows.

Note that = np, where p:T— G, t - utu. Replacing ]xi(t)— 1| <¢ by
Rey(t) 2 0 by using this comment and (3.18) in the first paragraphs of (3.7)
and (3.9), we can state both of these results using the form Rey;(¢) = 0.

We now return to the non-abelian case. Some of the modifications still hold
in this case. For example, if B, C are discretely syndetic, then Bb~1, Cc~1ev
where ve A(G,M) and be B, ceC. Applying (3.9) as in (3.11), we can replace
C-'CCVC~'by B~'BCVC~!.Alsofrom (3.11), wecangette N {C~*CCVC~! I
Ve ,7)}, which is not cls (C-*CCC~1) in general. Moreover, if D is any
subset of T, then (3.9) will hold for either D=1DDVD~* or (D')~Y(D")(D")V(D')~*
as in (3.14). Using the fact that if x is a continuous finite-dimensional unitary
representation of (T,7), then for every e >0, {t | H y()—1 H < ¢} is discretely
syndetic, we have the following result which is similar to (3.15).

THEOREM (3.20).

1. (T, ) is maximally periodic iff whenever a % e, then there exist B,C
discretely syndetic subsets of T and Ve /' (J) with a¢ B-'BCVC~!.

2. (T,9) is minimally almost periodic iff B-"*BCVC~! = T for all B, C
discretely syndetic and Ve & (T). .

One case in which (T,.7), with T not necessary abelian, satisfies the hypothesis
of this section is when %, =" = {f | fteW(u) (teT)}. To see this, recall by
(2.8) that since H(G,%) < ER, it is sufficient to show that H(G,%#) o ER. Now
since 1(%,) = 1(X'), then H(G, %) > {cls, x,V| Va 1(X")-neighborhood of u} =E,
by [2, Prop. 15.13]. Thus, H(G,#) o ER, and the desired equality is obtained.

4. Another criterion for maximal almost periodicity

In [1], it was proved that if (T,.7) is a topological group with T abelian,
and s ¢ e, there exists a continuous character y with x(s) 7 1 iff for some dis-
cretely syndetic open symmetric neighborhood U of e, s¢ U®. By using Folner’s
result, it is easy to replace U® by U°. Our results enable us to obtajn U?,
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THEOREM (4.1). Let (T,9) be an abelian topological group and s # e.
Then there exists a continuous character y with y(s) # 1 iff there exists a sym-

metric open discretely syndetic neighborhood U of e with s ¢ U*.

Proor. Suppose such a U exists. Since U is discretely syndetic, there exists
weU~! = U with Uweu. There exists Ve A/ (J) with wV < U. Now apply 1.
of (3.13) to the set (Uw)~*(Uw)(Uw)V = U~1U?*wV < U*. Since s¢ U*, there
exists a continuous character y with x(s) # 1. The converse follows from the
original result.

It was also shown in [1] that U? is the best result that could be obtained.
The authors conjecture that U3 is indeed obtainable by extensions of the methods
used in this paper. Note that in (4.1), we can replace U* by cls(U?w) for any
weUu. For, s¢clsU3w implies s¢ U3wV = (Uw)~1Uw)(Uw)V for some
Ve# (J), and, again, we can apply 1. of (3.13).
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